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abstract. — In the technique described in this article, the differential angular position of a 
spacecraft with respect to another spacecraft is determined by a radio interferometric tech-
nique that is designated here as quadruply differenced one-way ranging (QDOR). This tech-
nique allows very accurate planetary navigation with respect to orbital satellites within the 
Deep Space Network resources. The arrival signal phases of a spacecraft are differenced be-
tween two receiving antennas and then the resultant phase difference is differenced against 
another spacecraft. The resultant differential phase delay is calibrated by a quasar. The cycle 
ambiguities in the phase are determined from group-delay measurements of differential 
delta differential one-way ranging (ΔDOR); the ambiguity resolution depends on reducing 
certain ΔDOR errors. The presented cycle ambiguity resolution technique can also be ap-
plied to phase referencing to a quasar instead of a spacecraft; however, its confidence level 
will depend on the quasar position error. An analysis of a data set provides formal errors at 
the picosecond delay level with a temporal position resolution of 5 min. This is equivalent 
to about 0.05 nrad differential angular coordinate error that is approximately 10 m at Mars.

I. Introduction

We previously described four practical methods of interferometric technique that may be 
used to determine angular spacecraft positions: delta differential one-way ranging (ΔDOR), 
phase referencing, radio frequency synthesis, and Earth rotation synthesis [1]. This list is expand-
ed here, by reporting on a fifth method: quadruply differenced one-way ranging (QDOR). This 
name was coined as a natural extension of the ΔDOR acronym (also used as DDOR) that 
may be interpreted as doubly differenced one-way ranging.

The method of phase referencing was applied to angular spacecraft tracking in 2004 to 
the Mars Exploration Rover B (MER-B) spacecraft at the 1-nrad error level (10 ps) [2]. The 
quoted article gave a description of a radio interferometric application of the 45-baseline 
Very Long Baseline Array (VLBA) for determining spacecraft position in the quasar reference 
frame. Additional results on VLBA measurements on Cassini were also reported in [3]. Re-
lated to this project, differential positions between two near spacecraft were also evaluated 
at a much lower error level of 2 ps. Results for improving the Saturn ephemeris by tracking 
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the Cassini spacecraft with VLBA at the 1-nrad error level in the quasar reference frame were 
reported recently in [4]. Position tracking of the Phoenix lander relative to orbiter spacecraft 
near Mars (Mars Odyssey and Mars Reconnaissance Orbiter) by the VLBA again achieved the 
2-ps (0.19-nrad) error level at entry from post-evaluation of Mars approach [5]. 

Consequently, the question arose: could the Deep Space Network (DSN), using only two 
baselines, perform at the same or better error level than the VLBA with phase referencing?1 
Fundamentally, this is not a new question. Feasibility of differential ΔDOR between two 
spacecraft at Mars was studied over two decades ago with a predicted performance of 5 and 
1-nrad angular navigation error at 40 and 250 MHz group delay spacings, respectively [6]. 
Before the existence of the VLBA, Edwards [7] examined phase delay interferometry on  
6- and 250-km baselines with 1.6 to 20 deg angular quasar separation. However, the 250-km 
results did not appear to be fully convincing and the DSN did not (nor does) possess medi-
um-length baselines. Short baselines could not compete with intercontinental baselines for 
accuracy irrespective of the technique used. Note also that the phase cycle resolution was 
limited to well known strong and stable position sources. 

With better a priori source positions, improved bandwidth, sampling rate and resulting 
higher signal-to-noise ratios and shorter integration times, the chances of phase-based delay 
interferometry on a single intercontinental baseline are improved. Consequently, phase-
delay based interferometry on DSN intercontinental baselines on strong nearby natural 
sources was successfully explored on a limited data set.2 However, unless we use some of the 
aforementioned techniques to aid the phase cycle resolution, determining the final phase 
cycle ambiguity can be forbidding on intercontinental baselines with insufficient a priori 
position and media delay information, and weak sources. One possibility is using ΔDOR for 
cycle ambiguity resolution. Here, we present a method of differential spacecraft tracking 
that can be used with only two baselines, in the presence of ΔDOR tracking, at a higher ac-
curacy level than given by VLBA phase referencing.

II. Methodology

In ΔDOR, the received phase { (v) of spacecraft tone signals are tracked for at least two fre-
quencies at two receiving sites denoted by A and B, and then a group delay formed from the 
site differenced phases D{ (v) = {A(v) - {B(v): xDDOR-SC = D{ (v2) - D{ (v1)^ h/Dv21, where 

Dv21 = v2 - v1  is the group delay frequency. In addition, a distant natural radio source 
angularly nearby with a continuous spectrum, typically a quasar, is observed by the two 
sites, in bands centered at v1 and v2, and a differential group delay xDDOR-QSR is extracted 
by the very long baseline interferometry (VLBI) technique. The final product is in essence 
the difference between the spacecraft and quasar delays, xDDOR = xDDOR-SC- xDDOR-QSR, for 
determining the angular coordinates of the spacecraft with respect to the quasar. The final 
group delay consists of two components: the true geometric delay xtrue and a combination 
of various spurious delays that we consider as the error of measurement.

1 The average baseline length of the VLBA is about three times shorter than the intercontinental DSN baselines; thus, for 
the same delay error level, the VLBA accuracy is approximately three times lower [2]. 

2 W. Majid, personal communication, 2010. 	
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In QDOR, the arrival signal phases of two spacecraft are tracked the same way as in ΔDOR. 
Each of the spacecraft phases is differenced between the two receiving sites, but then the 
resultant phase-difference delays D{ (v) /v  are differenced among themselves at differing 
frequencies of the two spacecraft, v and v': xQDOR-SC = (D{ (v)/v- D{' (v') /v'). The VLBI 
procedure is carried out for a quasar with observing frequencies enveloping the two space-
craft frequencies v and v'. The differential phase delays of the quasar xDDOR-QSR (v) at the 
two spacecraft frequencies are differenced and this differential delay calibrates the space-
craft measurement by subtraction: xQDOR = xQDOR-SC- xQDOR-QSR (v) - xQDOR-QSR (v')^ h. An 
angularly magnified view of the observational geometry is displayed in Figure 1. The cycle 
ambiguities in the phase values are determined from the group-delay measurements of dif-
ferential ΔDOR for the two spacecraft. The success of cycle ambiguity resolution necessitates 
the reduction of certain ΔDOR errors.3 A statistical evaluation of a set of differential ΔDOR 
group delays sets the confidence level of cycle ambiguity resolution. Performing this pro-
cedure on two baselines determines the two differential angular coordinates. Due to delay 
measurements derived from phase and the absence of quasar coordinate uncertainty, QDOR 
provides substantially more accurate differential angular coordinate values with respect to a 
planet than the group-delay-based ΔDOR.

In general, it is expected that the observation sequence would start with an approximately 
15-min observation of a quasar with a strength of ≥1 Jy correlated flux density. It is to be 
followed by a 30-min sequence of alternating observations of the two spacecraft with a du-
ration between 15 and 60 s for each spacecraft, and a repeat of the quasar observation.

Figure 1. The geometry of delay-difference observations.

III. Data Analysis

During ΔDOR tracking of spacecraft, Mars Odyssey and Mars Reconnaissance Orbiter (MRO) 
were observed simultaneously within the beamwidth of two receiving antennas, DSS-26 
and DSS-34, on November 6, 2010. As a part of the ΔDOR technique [8], a nearby quasar, 
P 1622-253, was also observed in a sequence alternating between the quasar and spacecraft. 
The observing frequencies were between 8.40 and 8.48 GHz (X-band), distributed among 

3 Due to the absence of quasar position error and reduced media delays, the differential form of DDOR used here to 
resolve cycle ambiguities can be more accurate than ordinary DDOR if the instrumental phase ripple is reduced.	
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four 4-MHz observing bands for each spacecraft, with the largest separation of near 80 MHz. 
The data were recorded and reduced by phase tracking the spacecraft measurements, and 
by VLBI on the quasar. The obtained phase delays were referenced to spacecraft ephemeris 
tables provided by the Mars Odyssey and MRO flight projects4 and the a priori position 
of the quasar. The QDOR technique described in the previous section was applied to the 
residual phase delays after cycle-slip removal and the final result for one of the two closest 
frequency pairs, with about 5 MHz separation between the observing frequencies of the two 
spacecraft, is displayed in Figure 2.

A sinusoid function was statistically estimated from the spacecraft residual delays, since it 
appears that the residual delay represents the orbital correction due to its functional form 
and periodicity of about 2 hr. The anomalous first three values in the last spacecraft seg-
ment were excluded from the sinusoid fit. The amplitude of the sinusoid residual delay is  
0.045 ± 0.003 X-band cycles with a standard deviation of 0.013 cycles around the sinusoid. 
The full residual scatter is the standard deviation of the sum of the sinusoid and its residual 
scatter: . / . 0.0340 045 2 0 0132 2+ =  X-band cycles.5

To exhibit a correlation between the residual delays and orbital correction, a simple one-
parameter correction to the orbital model was performed by shifting the time origin of the 
differential delay model, which corresponds to simultaneous rotation of both spacecraft. 
When the model was shifted by 7 milliseconds (ms) (about 6 × 10–6 rad of rotation), the 
sinusoid amplitude is decreased by a factor of two, as displayed in Figure 3. 

In summary, the presented analysis provides evidence of formal errors at the picosecond 
delay level after removal of a small orbit correction, with a temporal position resolution of 
5 min. This precision is equivalent to about 0.05 nrad differential angular coordinate error 
at the DSN that is approximately 10 m at Mars.

IV. Statistics of Cycle Ambiguity Resolution

The spacecraft ephemeris table used in data reduction is based on a large set of Doppler-
shift measurements of the two orbital spacecraft with relatively short orbital periods. There-
fore, one expects the functional form of differential residual phase delay to resemble the 
differential model delay and to possess an insignificant mean value over the orbital periods. 
Thus, something would need to be truly wrong to have a cycle offset (about a 1-km differ-
ential orbit error) between spacecraft delay points and the quasar line.  

However, for spacecraft in cruise, wobbling spacecraft, partial orbital measurements, eph-
emerides with large uncertainties, or weak signals, one cannot rule out cycle offsets, and 
thus cycle ambiguities must be ascertained from differential ΔDOR measurements. This 
procedure will be described in this section.

Figure 2 shows an alternating sequence of differential phase delays of quasar and spacecraft. 
Originally, half of these delays were offset by one cycle with respect to each other. Figure 2 

4 Orbit reconstructed ephemerides: spk_m_od39427-39507_rec_v1, spk_psp_rec20075_19982_20075_r-v1. 

5 The integral of squared sinusoid equals to its peak-amplitude squared divided by 2. 	
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Figure 2. Displayed are the differential phase delay of spacecraft (blue sparse dots) and the the differential phase 

delay of the quasar (green dense dots). The differential position of the spacecraft is obtained by subtracting the 

differential quasar phase values. These position differences are denoted on the right-hand vertical axis of the 

figure. The sinusoid (red line) is a statistical fit to the spacecraft points.  

Figure 3. Same as Figure 2, except the temporal origin of the differential spacecraft model was shifted by 7 ms, 

corresponding to simultaneous rotation of both spacecraft by about 6 × 10–6 rad.
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was obtained by moving all segments to the same baseline within one cycle. The result was 
checked against the differential DDOR delays and the result was a reasonable agreement. 
Well, what is a reasonable agreement?

In order to answer this question, one must first study the DDOR error budget. A version of 
the DDOR budget based on 40-MHz group delay considerations was published in [1] consid-
ering terrestrial and interplanetary media delays, station location, Earth orientation, ther-
mal noise, clock error, and instrumental phase ripple. The error budget did not include the 
uncertainty of the quasar position. In the presented differential ΔDOR measurement, the 
quasar position error cancels, and all other contributions may be ignored but the thermal 
noise and instrumental phase ripple. 

The average instrumental phase ripple magnitude, the deviation from a constant nomi-
nal value, was inferred indirectly from a large set of ΔDOR data. In the error budget of 
ΔDOR [1], the average magnitude of phase ripple was assumed to be 0.2 deg with an esti-
mated . 30 ps contribution to 40-MHz group delay measurements. This value is a bit above 
half of the maximum root-mean-squared (RMS) value of 0.35 deg obtained by a direct 
study [9] of a single ΔDOR experiment with 4-MHz band observations, which explores the 
calibration of the phase ripple. Note that the maximum value reported in the same study 
was 0.5 deg. Extrapolating the above information, this study assumes that the maximum 
magnitude of phase ripple is 0.6 deg, corresponding to 21 ps at each of the two frequency 
bands of an 80‑MHz group delay observation (0.6/360/80 MHz = 21 ps . 0.18 X-band 
cycle). With the same reasoning, 0.2 deg of phase ripple magnitude corresponds to 7 ps 
delay at each band. 

The thermal noise is included in the standard deviation error of ΔDOR measurements. 
From the error budget of ΔDOR in [1], we obtain that the average thermal noise for dif-
ferential ΔDOR for 80 MHz group delays involving two medium-gain spacecraft antennas 
is vtotal = 2 19/2 . 14 ps. At each of the four frequency bands of differential ΔDOR at 
80 MHz group delay, this would correspond to v = 19 2 /2 . 7 ps. In this estimate of the 
thermal noise, the contribution of the quasar calibrator, with a strength of ≥ 1 Jy correlated 
flux density, is ignored. 

If we now proceed according to the common simplistic view of data reduction statistics, 
then we have eight 7-ps Gaussian noise contributions for differential ΔDOR and the RMS 
value for a total standard deviation is vtotal =7 8  ps = 20 ps. If we choose three standard 
deviations as the confidence interval, then we have that 3vtotal = 60 ps, which is half of the 
X-band cycle; a satisfying result for cycle ambiguity resolution. However, the substantially 
more complex statistical consideration below indicates that the simplistic view above serves 
only as a guideline.

The instrumental phase ripple is assumed to be practically constant during an observation 
session. Therefore, the instrumental phase ripple will act like a bias in contrast to the Gauss-
ian thermal noise, which randomly varies in an observing session and is thus estimable. 
However, we do not know the particular value of the bias β in a single experiment. For a 
large set of experiments with various observing frequencies, we assume that the probability 
distribution of phase ripple magnitude is constant (1/2bmax) between its maximum values 
!bmax . 
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The true value xtrue is the actual geometric delay that is independent of the method of mea-
surement. The measured differential ΔDOR delay value x is a sum of the true value xtrue , the 
actual bias β, and the noise n, thus

x x ntrue b= + +

The noise n randomly varies during an experiment and the bias β may have different val-
ues at different frequency bands and in other experiments. We need to limit that how far 
and how often β and n can move the measured differential ΔDOR delay x away from xtrue  
within the ± one cycle boundaries in a statistical sense. In the foregoing, we will limit the 
frequency of this motion by imposing limits on the statistical distribution of β and n. The 
standard deviation of noise is given by v = n2^ h1/2. We assume now that n 1 3v with a 
Gaussian false probability of 2.8 × 10–3 and that b  is within the limits of a bias threshold 

b, where b 1 bmax  is chosen such that the probability P b 2 b^ h. 2.8 × 10–3. Within these 
statistical limits, we can now examine how well differential ΔDOR can resolve a potential 
cycle offset in QDOR.

Due to the high precision of QDOR delay values compared to ΔDOR, we consider the true 
delay xtrue as one of the xQDOR delays lying on the QDOR cycle grid: the one that is being 
closest to the differential ΔDOR value x.6 If one needs to be very precise, then the QDOR 
delay error should also be considered in the statistics. Let us now assume that in Figure 2 
the selected spacecraft delay segment values are potentially wrong by one cycle. The ques-
tion is then the following: Could a particular measured differential ΔDOR delay x corre-
spond to the case when the true delay xtrue is at or beyond the one cycle boundaries? The 
answer is twofold: 

(1)	 Half-cycle confidence test: On the one hand, one should attempt to assure that the 
true value xtrue is practically always on the right cycle by limiting the probability 
of false choice Pfalse = P ( x- xtrue 2 Half-cycle) to a small value. This is a suf-
ficient but not a necessary condition. In general, we wish keep this probability 
in the neighborhood of 10–3. Let us denote Thalf  as half of the full cycle T  (120 ps 
at X-band). Considering the statistical limits we have set on the noise and bias 
right after Equation (1), the condition for the combined false choice probability 

P ( x- xtrue 2 Thalf) 1 5.6 × 10–3 for all measurements is equivalent, at this false 
choice level, to the inequality

3 b Thalf1v+

(2)	 Full-cycle confidence test: On the other hand, irrespective of whether the above half-
cycle confidence test is satisfied, we can check a particular experimental value x 
against the adjacent full-cycle boundaries for potential cycle offset by the prob-
ability distribution of random noise and bias. For the given confidence level, this 
test of the absence of a false choice is a necessary condition. For an actual mea-
sured x  value, this test of false choice checks whether the above probability limits 
for n  and β are satisfied with respect to the adjacent cycle boundaries: 

6 The cycle grid consists of the sequence xtrue + mT, where m is an integer and T is the cycle interval. 	

(1)

(2)
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T bx x 3true 2 v- - + =

T bx x 3diff- DOR QDOR 2 v- - +D

If Equation(3) is satisfied, then the choice is valid within the limit of the confidence level. 
The later full-cycle confidence test of the absence of a false choice, based on the combination 
of actual measurements and the inequality in Equation (3), is displayed in Figure 4. The dif-
ferential measurement points, x- xtrue = xdiff-DDOR- xQDOR, are shown as a function of the 
group delay frequency, in such a way that the differential DDOR group delays x with their 
measured 3v standard deviation values varies and the assumed threshold value of bias b is 
fixed to the one-cycle boundaries: x- xtrue + 3v 1 T- b. The weighted average of delays 
is displayed on the right in this figure; the averaging process will be described below in the 
next section. With the given probability of false choice value of 5.6 × 10–3, the edge of the 
error bar of the averaged delay should stay within the bias threshold boundaries, while the 
delay point by definition should also stay within the half-cycle boundaries. 

(3)

Figure 4. Full-cycle confidence test: statistical evaluation of differential DDOR group delays for a potential offset 

of one phase-cycle in QDOR. The horizontal axis represents the group-delay frequencies. The 6 individual points 

with 3v  error bars (blue) represent the differential DDOR delays x - xtrue = xdiff-DDOR - xQDOR  formed from 

two DDOR delays with the same group delay frequency, relative to xQDOR . The solid (red) line represents the 

bias limit T- b at the 2.8 × 10–3 confidence level. This bias is the phase ripple deviation from the nominal 

value across the various 4-MHz observing bands. The (green) point with the big circle on the right represents 

the weighted average referenced to 80 MHz. Note that, while none of the delay errors satisfy the half-cycle 

confidence test of the absence of false choice at the 5.6 × 10–3 confidence level (3v+ b 1 Thalf ), the full-cycle 

confidence test of the best or averaged delay itself assures the absence of false choice at the same confidence 

level with a margin (; x - xtrue ;+3v 1 T - b) .
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We are now ready to check our simplistic guideline calculation of the confidence limit of 
QDOR for the presence of a cycle slip by the inequality of the half-cycle confidence test 
3v + b 1 Thalf , as applies to the above values of v  and b at 80 MHz with a combined con-
fidence level of 5.6 × 10–3. Using that b = 0.389 × 8 bmax  for differential ΔDOR bias at the 
confidence level of 2.8 × 10–3 in Table 1, we obtain for the average delay case that 3v + b =  
3 × 2v  + 3.1 bmax = 6 × 7 ps + 3.1 × 21 ps = 107 ps > 60 ps = Thalf . Therefore, our chosen 
confidence level is not satisfied and it can be shown from Table 1 and Gaussian probability 
values that the half-cycle false choice confidence is only at the 2 × 10–1 level, and it will be 
somewhat lower for low-gain transmitters and with the larger media-effects at larger angu-
lar separations. If we can reduce the maximum instrumental phase-ripple magnitude below 
0.2 deg, then our chosen 5.6 × 10–3 confidence level will hold.

Table 1 contains the probability of false choice P (bavg 2 b)  as the function of the 
bias threshold ratio to the maximum bias for positive bavg. Here, the probability 
P (bavg 2 b) = P (; bavg ;2 b) /2 is evaluated as a function of the threshold b. As was  
explained earlier, we assume that the probability distribution of the bias b  is assumed to 
be homogeneous; a constant between -bmax  and bmax  and zero otherwise. The probability 
distribution of bavg  is an eightfold convolution of the homogenous distribution function 
for the 8-variable case. It can be evaluated analytically; it consists of 8 patched segments 
of eight-order polynomials. The tail integral of this distribution function is displayed in 
Table 1 for a few values of b for differential and ordinary ΔDOR average and single delay 
values.

V. Statistical Averaging of Differential DDOR Delays

In this section we will attempt to reduce the errors of the differential ΔDOR delay xdiff-DDOR  
by narrowing the effective probability distribution of the noise n  and the bias β via averag-
ing over the delay values of differential ΔDOR at various group delay frequencies. For the 
current ΔDOR, the averaging can be done in two ways — average the ΔDOR delays first and 
then difference it between spacecraft, or difference first and then average. We will present 

Table 1. Selected values of P(b 2 b) = P(; b ;2 b)/2  as the function of the fractional bias threshold. These  

are integrated probabilities of convoluted homogeneous bias distributions for frequency sequences of  

(0, 20, 40, 80). For single DDOR, P(b 2 b) = 1/2 (1 - b/bsum) 2.

Probability of 
false choice 
(half-values)

Single

Threshold fraction b/bsum

	 0.7 × 10–3	 0.776	 0.408	 0.962	 0.521

	 1.4 × 10–3	 0.786	 0.389	 0.948	 0.503

	 2.8 × 10–3	 0.746	 0.367	 0.926	 0.482

	 5.6 × 10–3	 0.697	 0.338	 0.896	 0.455

	 11.2 × 10–3	 0.642	 0.310	 0.853	 0.426

	 22.4 × 10–3	 0.573	 0.277	 0.791	 0.385

	 44.8 × 10–3	 0.493	 0.238	 0.701	 0.338

	 89.6 × 10–3	 0.394	 0.191	 0.579	 0.275

Average of 6 Single

Differential DDOR

Average of 6

DDOR

4b: bsum = 4bmax 8b: bsum = 8bmax 2b: bsum = 2bmax 4b: bsum = 4bmax
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an averaging calculation that is independent of the averaging order. The averaging will 
result in no significant improvement compared to the single delay with the highest group 
delay frequency; nevertheless, the exercise is instructive and delay averaging can improve 
the success of the full-cycle confidence test.  

By modifying slightly the current algorithm of ΔDOR, a third way of averaging is possible 
by estimating an average ΔDOR group delay as a gradient of phase against all different 
frequency bands and then calculating a single differential ΔDOR delay. Estimating an aver-
age ΔDOR delay as a gradient of phase will result in a bit better, but not a truly significant, 
improvement.

We will use four ΔDOR frequency bands in the description of averaging method, but our 
consideration is the same for any number of bands. Referenced to the lowest frequency 
band, there are two logical choices of frequency sequences of current ΔDOR when includ-
ing the carrier frequency, in MHz: (0, 40, 60, 80) or (0, 20, 40, 80). The corresponding group 
delay frequencies Dv are in MHz: (20, 40, 60, 80). The group delay is inverse proportional 
to the group delay frequency, and so thus the noise and the phase ripple bias. Therefore, to 
achieve uniform averaging, we will use weighted averaging of the ΔDOR delays by scaling 
these sources of errors to their 80-MHz group-delay frequency level by a factor of m = Dv/80
Thus, the values of m, in growing frequency order, are (0.25, 0.5, 0.75, 1.0). 

There are 4 × (4-1)/2 = six distinguishable ΔDOR group delays for four bands (half-off-
diagonal part of the corresponding asymmetric 4 × 4 matrix), but only four independent 
variables for noise n  and phase ripple bias b. The four indices 1 to 4 will be used singly for 
the band-dependent bias and noise, and in pairs for ΔDOR group delay related quantities, 
which involve two frequencies. In the following, the indices will run in increasing frequen-
cy order. According to Equation (1) with interpreting xtrue as the ΔDOR geometric delay, and 
the definition of the ΔDOR delay xDDOR-SC described in Section II, we select a ΔDOR group 
delay between band 2 and 1:

( ) ( ) /v v vx x n21 2 1 21 21 21true{ { bD D D= - = + +^ h

where, if we denote the single-band noise and bias contribution to phase by D{n (v) and 
D{b (v), respectively, then b21 + n 21 can be written in four single-band components as7 

( )/ ( )/ ( )/ ( )/n v v v v v v v v21 21 2 21 1 21 2 21 1 21n nb { { { {D D D D D D D D+ = - + -b b

Let us now mark the delay of the second spacecraft by the prime symbol lx . From the pairs 
of ΔDOR delays of two spacecraft (x, lx ), we can then form a 6 × 6 matrix consisting of 36 
differential ΔDOR group delays involving eight independent variables of n  and b. However, 
in the following consideration, only six delays will be used, the diagonal part of the 6 × 6 
differential ΔDOR delay matrix, which is shown in Table 2.8 This way, the weighted averag-
ing method is equally applicable to ordinary ΔDOR and the exposition of the calculation is 

7 All known information about bias and noise refers to differential, interferometric phase values between the two site 
receivers. Therefore, in our current consideration, the bias and the noise are not broken into site-dependent components 
in D{. 

8 It can be shown that scaling and averaging over all the 36 differential delays reduces to the presented averaging of only 
the diagonal part of the 6 × 6 differential ∆DOR delay matrix. 	

(4)

(5) 

. 
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simplified. We assume in the following that both spacecraft have the same band sequence, 
thus the index order is the same. The mixed case is similar, but the necessary pairing of 
the ΔDOR delays with the same group frequencies causes index remapping for one of the 
spacecraft. 

If we now define the quantities b  and n  as the 80-MHz group-delay-frequency representa-
tion of the bias and noise for indices 1 to 4, e.g., ( )/ ( )/v v v 8021 2 21 2b m { {D D D= =b b , then 
the multiplication of Equation (5) by the scale factor m21 and forming the difference for dif-
ferential ΔDOR leads to Equation (6), since we matched the group delay frequencies of the 
two spacecraft and therefore lm = m for all indices:

2 21 12 1 2 1

( )x x x n

x n n

n

n n

21 21 21 21 21 21 21 21 21

21

true

true

m m m b b

m b b b b

- = + + -

= + - + - - - + -

+l l l

l l l l

^ ^
^

h h
h

where xtrue  is now the geometric delay of differential ΔDOR, and the double-indexed group 
frequency dependence vanished for the bias and noise. Applying Equation (6) to all six 
ΔDOR group delay terms will lead to sequences formed from the terms on the right-hand 
side of Equation (6) for both bias and noise as, e.g., , , , ,n n n n n n n n4 1 4 2 4 3 3 1- - - -     

,n n n n3 2 2 1- - .

We are now ready to evaluate the average delay. If we denote the differential sum of all 
random variables by fi  (i runs 1 to 4) and the sum of all m values by m sum, and xavg  as the 
sum of the left-hand side of Equation (5) divided by m sum, then the weighted average of dif-
ferential ΔDOR reduces to
 

i iin ni 1f b b= + - -l l

41sum 4 4 1 12 3 3 32 2m m m m m m m= + + + + +

/x x 1 sumavg true 4 1 4 2 4 3 3 1 3 2 2 1f f f f f f f f f f f fm= + - + - + - + - + - + -^ ^ ^ ^ ^ ^ ^h h h h h h h6 @

Table 2. Pairing of 6 DDOR delays for two spacecraft. Pairs with the same group 

delay frequency are marked by the cross (×) symbol. The left outer column and the 

top row represent the DDOR delays with indices in growing frequency band order, 

for the frequency series of (0, 20, 40, 80). The right outer column and the bottom 

row represent the group delay frequency in MHz.

(6)

 (7)

(8)

(9)

		  x21	 x32	 x31 	 x43	 x42	 x41	

	 lx21 	 ×	 ×					     20

	 lx32 	 ×	 ×					     20

	 lx31 			   ×	 ×			   40

	 lx43 			   ×	 ×			   40

	 lx42 					     ×		  60

	 lx41 						      ×	 80

		  20	 20	 40	 40	 60	 80
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and thus the error terms are

/x x 1 3 3sumavg true 4 3 2 1f f f fm- = + - -^ ^h h

We evaluate now the needed m values for the selected six DDOR group delays. For the ob-
serving band sequence (0, 20, 40, 80), the m values are: m41 = 1.0, m42 = 0.75, m43 =  0.5, 
m31 =  0.5, m32 = 0.25, m21 =  0.25. For the other sequence, (0, 40, 60,80), the m values are: 

m41 = 1.0, m42 = 0.5, m43 = 0.25, m31 = 0.75, m32 = 0.25, m21 = 0.5. For both sequences, 

msum = 3.25.
 
In general, the noise level v = n2^ h1/2 can be different for each of the four frequency 
bands, and thus if Equation (10) applied for noise only to evaluate the standard deviation 
v  of xavg - xtrue  by the RMS of all random independent terms of noise in Equation (10), 

we get that

/9 9
/1 2

4
2

3
2

2
2

1
2

sumv v v v v m= + ++
-^ h

where, for all four indices

n ni
2

i
2

i
2v = + l

The improvement factor with respect to a single 80-MHz differential DDOR delay is ob-
tained by dividing v  with the corresponding single 80-MHz delay standard deviation 
of n n n n

/
4
2

4
2

1
2

1
2 1 2

+ + +
-

l l^ h . As an approximation, substituting the same value for 
all standard deviations, we obtain that the average v  is / . /20 3 25 2 2 =^ h 0.98 times 
the single 80-MHz differential DDOR value. For ordinary DDOR, the reduction factor is the 
same.

For the improvement factor of the bias with respect to a single 80-MHz differential DDOR, 
we need to consult the false choice probability for the differential DDOR bias threshold in 
Table 1. From this table, we obtain that b = 0.389 × 8 bmax  at the confidence level of 2 × 1.4 
× 10–3 = 2.8 × 10–3 for the averaged delay and b = 0.786 × 4 bmax  for the single 80-MHz dif-
ferential DDOR delay. Thus, the improvement factor for the bias is 2 × 0.389/0.786 = 0.99. 
For ordinary DDOR, there is no reduction at high confidence levels. Thus, an averaging of 
differential or ordinary DDOR delays results in no significant improvement.

As the final step of this section, we formulate the phase gradient method of averaging and 
evaluate it for the frequency sequence v =  (0, 20, 40, 80) of both spacecraft. Since the 
lowest frequency v1 is defined as zero, the frequency v will serve also as the group delay 
frequency referenced to v1 . For convenience, we will use same dimensionless scale factor 
defined above as applied to v, m i = vi /v4 = vi /80 for all four frequencies, and scale the dif-
ferential phases into delays referenced to 80 MHz, h = D{ (v)/80. This way, the formulation 
conforms the notation of this section and xavg  will transparently reduce to the ordinary 
DDOR group delay for the frequency pair (0, 80). 

This averaging method models the phase D{ (v) (as h ) as a linear function of the frequency 
v (as m) expressed now in the normalized variables as

(11)    

(12)

(10)
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x1 avgh h m= +

and estimate the initial phase h1 and the gradient-delay xavg  by minimizing the following 
sum of residual-squares of the measurements with weights w i  with respect to h1 and xavg : 

iw xavg1
2

i ih m h+ -^ h/

The above mathematical procedure is called linear regression, and its solution involves five 
quantities of scalar sums (S0,S1,S2,Y0,Y1) of the vector components of the weights w i , the 
values of independent variable m, and the measurements hi , and in addition the determi-
nant D of the resultant two linear equations:

S w

S w

S w

Y w

Y w

D S S S

0

1

2
2

0

1

0 2 1
2

i

i i

i i

i i

i i i

m

m

h

m h

=

=

=

=

=

= -

/
/
/
/
/

with the solution

/D S Y S Yx 1avg 0 1 1 0= -^ ^h h

/D S Y S Y11 2 0 1 1h = -^ ^h h

If we apply Equation (1) to the normalized differential DDOR variables as nxtrueh b= + +  
and denote the differential sum of all error variables, as in Equation (7), by 

in ni i i if b b= + - +l l^ h, then the xavg error terms from Equation (21), which correspond to 
Equation (10), are now 

i/D S w S wx x 1 i0 i i 1 iavg true f fm- = -^ ^h h/ /

Applying equal weights of one to Equation (23), and denoting the number of frequency 
bands as N = 4, we obtain that 

N Nx xavg kktrue
2 1 2 1

1
i i i ifm m m m- - --

-
-^a ah k k// //

As an approximation, setting all standard deviations of noise to v = n2 , the average stan-
dard deviation of noise for differential DDOR by the RMS of Equation (24) is then
 

/D N N2 2
/ /1 2 2 1 2

1 2

i iv v v m m= = -
- -

-
^ ^ah h k/ /

In our case, N = 4, /mi = msum = 1 + 1/2 + 1/4 = 1.75, /mi
2
= msum

2 = 1 + (1/2)2 + (1/4)2 = 1.31, 
thus the improvement with respect to the single differential DDOR group delay of  
2v  is (1.31 – 1.752/4 )–1/2 2 v/2v = (2 × (1.31 – 1.752/4))–1/2 = 0.96, not a truly significant 
improvement. For the confidence level of 2.8 × 10–3, the bias improvement is similar. Note 
that the improvement of the group delay error would be better with an optimally designed 
frequency sequence. 

(13)

(15)

(16)

(17)

(18)

(19)

(22)

(20)

(21)

(24)

 (25)

(14)

(23)
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VI. Conclusion

The presented method of differential position determination between two spacecraft 
appears to be a solid procedure with high precision for small angular separations. Media-
induced delay effects will degrade its precision with larger angular separations, but not sub-
stantially within 0.1 deg of spacecraft separation, which is equivalent to about 30 days out 
for Mars approach. In general, one needs to observe alternately the two spacecraft and the 
quasar with antenna movement, adding temporal to the spatial effects of media delay. The 
ruggedness of the technique relies on solid DDOR measurements for phase cycle ambiguity 
resolution; the current half-cycle false choice confidence is estimated to be only at the 0.2 
level (equivalent to 1.3-v  Gaussian noise) if the overall magnitude of instrumental phase 
ripple does not exceed 0.6 deg. Instrumental phase ripple for DDOR had to be seriously 
considered and any reduction of its magnitude is strongly desirable to make the cycle am-
biguity resolution more rugged, that is, in particular needed for larger angular separations 
or low-gain transmitters. Using the calibration technique described in [9], the QDOR quasar 
may be applied for phase ripple reduction; otherwise, an appropriate high-strength quasar 
observation after the normal observation sequence should be performed. Additionally, an 
effort to calibrate or reduce the instrumental phase ripple at its origin would be equally 
appropriate. In its current state, DDOR could not calibrate the cycle ambiguities at 32 GHz 
(Ka-band). For this case, the group delay frequency would need to be increased by fourfold.
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